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1 Introduction. The assignment problem.

The purpose of this paper is to present the primal-dual algorithm for the
ass:gnment problem in a transperent way, for readers who are not trained in
optimization theory but do have som basic mathematical knowledge.

The assignment problem can be described as follows. Let {R;,¢ = 1,2,..., N}
be a set of N points which, for sake of thought, we assume has its ele-
ments located in the plane. Each point R; will be called a source. Let
{S,,7=1,2,...,M} be a set of M points which we also - for sake of thought
- assume has its elements {S;,7 = 1,2, ..., M} located in the plane. We call
S; a sink. For each source R; and each sink S; we associate a cost c(¢, j),
and we call {c(3,7) : 4 =1,2,.., N, j =1,2,.., M} the cost matrix.

We also assume that N < M.

By a matching we mean that we to each source in a given subset of all
the sources R; have assigned a sink S; in such a way that no sink is assigned
to more than one source. We denote the sink which is assigned to the source
R; by Sj(;). If the subset under consideration is the whole set of sources we
call the matching a complete maiching or simply an assignment. We denote
a matching by

P = {(i(k),j(i(k)), k=1,2,..,n}

where n is the size of the subset, i(k) denotes the index of a source, and
j(i(k)) denotes the index of the sink associated to the source Ryy,.
To every matching P we can associate a cost ¢(P) by

n

e(P) = 3 c(i(k), j(i(k))

k=1

The assignment problem is to find a complete matching P* such that
¢(P*) = min{c(P)},
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where the minimum is taken over all complete matchings.

2  The linear programming formulation.

The assignment problem can be formulated as a linear programming problem
as follows. Let X be a set of N x M matrices, and let z = {z(7,7), @ =
1,2,..,N, j=1,2,.., M} denote a generic matrix in X. A matrix z belongs
to X if the following properties holds:

a) z(i,j)=0orl, i=1,2,..N, j=1,2,..., M,

b) ¥, 2(i,5) < 1for 1 < i < N;

¢) TN x(i,j) <lfor 1< j< M.
Let X be the subset of X for which

b) M, 2(i,5) =1for 1 <i < N.
Define L(z) by

N M
Liz) =35 a0, 1)clé, ).

i=1j=1

Having introduced these notations we can formulate the assignment problem
simply as follows:

Problem I: Find min{L(z) : z € X}.
Let us now introduce the set X*, a larger set than X, by replacing the
property in a) by the following property:

a’) 0 < z(3,5) £ 1.
The linear programming formulation of the assignment problem is as follows:

Problem II. Find min{L(z) : z € X*}.
Since L(z) is a linear function considered as a function of the elements
{z(i, )} of z, a minimum value of the second problem can always be found at
a point where the elements of = are 0 or 1, and hence, by solving Problem II

and looking for an integer solution, we will also find a solution to Probleml.



This thus implies, that the assignment problem can be formulated as a lin-
ear programming problem, and therefore - in principal - computer programs
for solving linear programming problems can be applied to the assignment
problem. However standard programs for linear programming problems do
not always perform well when applied to the assignment problem.

In the primal-dual algorithm we will only consider matrices x belonging
to the set X; that is, we will always assume that an element of a N x M

matrix £ is 0 or 1.

3 The dual formulation.

In order to present the dual formulation of the assignment problem we
shall first introduce the so called dual variables. Thus to each source R;
we associate a dual variable which we denote by a(i) and to each sink S;
we associate a dual variable which we denote by §(j). We shall say that
{a(?), 1 =1,2,...,N} and {B(j), j = 1,2,..., M} are feasible dual variables
if

a(t) + 8() <cli,j), i=1,2,.,N, j=12,..,.M.

We shall first describe the primal-dual algorithm for the case when the
number of sources and sinks are equal, that is when N = M. The case
N < M can, by enlarging the set of sources, be transferred'into the case
when N = M. Therefore until we specify something else, from now on we
assume that N = M. We shall however still use both letters N and M.

In case N = M then the set X is such that

M
S a(i,f) =1, i=1,2,.,N (1)
Jj=1



and

N
Sz, ) =1, j=1,2,..,M. (2)
i=1

Next let z € X and let us rewrite the expression for L(z) as follows:

=S¥ x(i, §)eli, §) sz(u (c(t, 5) — (1) — B(5)) + (i) +B(4))

M N M N M
=332l ) (i) — o®) = B + ; ;x(z‘,j)a(z‘) + 222 2.6 ()
N M M
= ; Z;:c(z',j)(c(i, —a(i )+ Z )+ ;ﬂ(j) (3)

where the last equality follows from the relations (1) and (2) above.
Now if we also assume that the dual variables are feasible, then the first
term on the last line in the expression (3) above must be > 0, and therefore

it follows that

N M
L(z) 2 ;a(i) + Zlﬁ(j)

if the dual variables are feasible.
From this follows, that if we can find a matrix z € X and dual feasible

variables {a(i), i =1,2,...,N} and {B(j), j = 1,2,..., M} such that

N M
L(z) = ; a(i) + Z_:l 6)

then we have found an optimal solution to the assignment problem. This is
the key obsevation behind the primal-dual algorithm.

Let us write
N

D(e, B) = Za +Zﬂ

=1 I=1
Thus, what we want to find is a matrix 2 € X and dual variables {a(i), i =

2,..,N} and {B8(j), 7 =1,2,..., M} which are feasible, such that

L(z) = D(e, B)- (4)



Again looking at the equality (3) we find that this will be accomplished if
the following relations hold between the matrix z in X and the dual feasible

variables {a(i), 1 =1,2,.., N} and {8(j), j = 1,2, ..., M}:
c(i, j) > a(i) + B(j) = =(i,j) = 0. (5)

The strategy for the primal-dual algorithm is to find a set of feasible dual
variables and a matrix  in X such that (5) holds. Once these are found the

prcblem is solved!

4 The primal-dual algorithm. An outline.

In this section we shall give an outline of the primal-dual algorithm.

First we need some other notions and notations. Suppose that we have a
set of feasible dual variables {a(i), i = 1,2,..,N}and {8(j), j =1,2,..., M}.
A pair (3, 7), where 7 is an index of a source and j is an index of a sink, such
that

c(i,j) = (i) + B(5) (6)

is called an admissable arc. The set of all admissable arcs will be denoted A
or, if we want to emphazise the dependence of the dual variables, by A(«, ).

Now given a set A of admissable arcs, we associate a subset X (A) of the
set X introduced above in such a way that:

r€X(A)ifze X and z(1,5) =0if (4,5) ¢ A.

Another notation which will be practical is the notation n(z), by which

we mean the number of non-zero elements in the matrix z, that is
n(z) =Y > (i, j).
ig

Ncte that if the matrix z € X and also n(z) = N then z € X and that if
z € X then n(z) = N.



Let us also use the following terminology. We say that a source R; is full,
if
M
>oz(i,5) =1,
=1
otherwise we say that the source R; is empty. Similarly we say that a sink

S; is full if

N

Zx(iaj) =1,

1=1

otherwise the sink S; is empty. Finally we shall call a matrix z € X a flow,
and shall call n(z) the size of the flow.

Having introduced these notations and notions, we note that the as-
signment problem is solved if we can find a set of feasible dual variables
{a(d), i = 1,2,..,N} and {B(j), 7 = 1,2,..,M} and a matrix z such
that n(z) = N and z € X(A(w,B)) where A(w,f) is the set of admiss-
able arcs associated to the set of dual variables {a(i), 1 = 1,2,..., N} and
{BG), §=1,2,... M}.

The primal-dual algorithm will use three basic sub-algorithms which we
call the labelling routine, the flow change routine, and the dual variable
change routine.

The main purpose of the labelling routine is to connect an empty source
with an empty sink. If the labelling routine ends with such a connection we
say that the labelling routine ends with a breakthrough. Otherwise we say
that the routine ends with a non-breaktrough.

The purpose of the flow change routine is to change the present flow in
such a way that the new flow 2/, say, will be such that 1) ' € X(A) and 2)
n(z') = n(z) + 1.

The purpose of the dual variable change routine is to change the present
set of dual variables {a(i), i = 1,2,...,N} and {8(j), j = 1,2,..., M}, to
a new set {a(i), i = 1,2,.., N} and {8(j)', j = 1,2,..., M}, say, in such
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a way that the new set of admissable arcs A(a’,5’) will be such that the
present flow z which we know belongs to X (A(a, 8)) also will belong to the
set X(A(d/, 7).

A brief description of the primal-dual algorithm is as follows.

Step 0. Determine an initial set of feasible dual variables, determine the
set A of admissable arcs associated to these dual variables, and determine an
initial flow z € X (A).

Step 1. Check whether n(z) = N. If yes we are ready. If not then:

Step 2. Start the labelling routine.

Step 3. If the labelling routine ends with a breakthrough then go to step
4. Otherwise go to step 5.

Step 4. Use the flow change routine to update the flow z € X(A) and
check whether n(z) = N now. If so, we are ready. Otherwise go to Step 2.

Step 5. Use the dual variable change routine to change the dual variables.

Step 6. Find the new set of admissable arcs.

Step 7. Continue the labelling routine. Then go to step 3.

This is it. That the primal-dual algorithm will lead to a solution follows from
the properties we already have mentioned regarding the labelling routine,
the flow change routine and the dual variable change routine, together with
the following fact: When we continue the labelling routine after we have
found the new set of admissable arcs A(c, '), at least one more sink will be
labelled.

We shall now give the arguments from which it follows that the primal-
dual algorithm leads to a solution of the assignment problem.

We start with some set {a(3), 1 =1,2,...,N} and {B8(j), 1=1,2,..., M}
of dual variables. We determine the set of admissable arcs A associated to

this set and find an initial flow z € X(A). We can in fact always take as
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initial flow the flow zy defined by
2066, 5) =0, i=1,2,.,N, =12, M.

Next we check if our initial flow is in X in which case we are ready.
Otherwise we start the labelling routine (step 2). If the labelling routine
ends with a breakthrough, then, by using the flow change routine (step 4),
we will increase the size of the flow by one.

If instead the labelling routine ends with a non-breakthrough then we use
the dual variable change routine to determine a new set of dual feasible dual
variables (step 5) after which we determine a new set A’ of admissable arcs
associated to the new set of dual variables (step 6). Recall that one of the
properties of the dual variable change routine is that the present flow will
belong to X(A'). We shall now continue the labelling and this can always
be done since the set A' contains an arc (i, j), say, such that the source R;
is labelled but the sink S; is not yet labelled. This implies that after at
most M returns to the labelling routine, the labelling routine must end in a
breakthrough, and once we have a breakthrough we will use the flow change
routine by which the size of the flow is increased by one.

Since, 1) the number of operations when using the labelling routine once
is bounded by C * N2, 2) the number of operations when using the flow
change routine is bounded by C'x N, 3) the number of operations when using
the dual variable change routine is bounded by C * N2, and 4) the number
of operations to determine the new set of admissable arcs, after a new set
of dual variables has been found, is bounded by C % N2, we conclude that
after a finite number of operations the primal-dual algorithm will produce a
solution to the assignment problem, and that the computational complexity

of the algorithm is at most O(N*).
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5 A description of the labelling routine.

To complete the proof of the fact that the primal-dual algorithm solves the
assignment problem in case N = M we need to verify the properties re-
garding the labelling routine, the flow change routine and the dual variable
change routine we have mentioned above. In this section we shall describe
the labelling routine in detail.

The labelling routine is as follows. We start by labelling all empty sources,
with a label ”Empty”. We call these sources the first generation of labelled
sources. We then label each sink S; for which there exists an admissable arc
(i,4) for some index 1 associated to a labelled source. Whenever we find a
sirk that can be labelled - and is not yet labelled - we label it by R; and we
call the source R; the father of the sink. Once a sink is labelled we do not
label it again. This means that the labelling may depend on the order in
which we go through (check) the admissable arcs of interest. We note that
for all arcs (4, j) such that both R; and S; are labelled then z(3,5) = 0. (In
fact, if R; is labelled and hence empty then z(i,j) = 0 forall j =1,2,..., M)

We call the set of labelled sinks obtained in this way, the first genera-
tion of labelled sinks. Now, if any of the labelled sinks is empty we have
a breakthrough, and we stop the labelling routine. Otherwise we continue
the labelling routine as follows. For each labelled sink S; we check if there
exists a source R; which is not yet labelled and for which z(Z, j) = 1. If this
is the case we label the source by the sink S;, which we call the father of
the labelled source. If we can not find any new source to label, we stop the
labelling routine and the labelling routine stops with a non-breakthrough.
Otherwise we have obtained a new set of labelled sources, which we call the
second generation of labelled sources.

We now look at all admissable arcs for which the first index 7 of an arc

13



(1,7) is associated to a source which belongs to the second generation of
labelled sources. If we can find a sink S; - which is not yet labelled - with
an admissable arc (i, ) associated to a source R; of the second generation
of labelled sources, then we label this sink by R;, which we call the father
of the labelled sink. We call all such labelled sinks the second generation of
labelled sinks.

If we cannot find another sink to label we stop the labelling routine.
Otherwise we have obtained a new set of labelled sinks.

Note that if R; is the father of some sink S; belonging to the second
generation, then, again, z(i,j) = 0, since if z(¢, j) = 1 then, since we know
that z(i,j(1)) = 1 where Sjq) is the father of R; say, this would violate
condition (1), defining the set X. Note also that the set of sinks belonging to
the second generation, will always be the same independently of the order in
which we investigate the admissable arcs. However, which source, that will
be the father of a sink of the second generation, may depend on the order of
investigation.

If any of the sinks in the second generation is empty we have a break-
through and we leave the labelling routine. Otherwise for each sink in the
second generation of labelled sinks, we look for a source R; which is not yet
labelled and for which z(4,j) = 1. If we can find such a source we label it
by S;. If we can not find any such source the labelling routine ends with a
non-breakthrough, otherwise we continue the labelling.

And we continue in this way , going back and forth between labelled
sources and labelled sinks, until either we obtain a breakthrough or we end
in a non-breakthrough.

When we end the labelling routine we will have a set of labelled sources

and labelled sinks. If a labelled source is empty the label is simply ”empty”.
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If a labelled source is full, its label will be a symbol of a sink and this sink will
be called its father. Each labelled sink is labelled by a symbol of a source,
and this source is called the father of the labelled sink.

6 The flow change routine.

Tte flow change routine is very simple. It is used when the labelling routine
ends with a breakthrough.

What we do in the flow change routine is the following. We start at a
sink (the sink) which is both labelled and empty, say Sj(). (At least one such
sink exists). By going to its father we find a source R;(;) say. If this source is
empty we have obtained what we call a one-step connection. We then update
the present flow simply be replacing the present value of z(i(1), j(0)), which
must be = 0, since both R;;) and Sj(p) are empty, by the value 1. Since the
arc (i(1), 7(0)) is admissable it is clear that the updated flow also belongs to
X{A) and it is also clear that the flow value has increased by one.

In case the source Ry is not empty, then we go to the sink Sj) say,
which is the father of R;x), and from Sj(;) we then go to the source Ry(3) say,
which is the father of S;().

Again we have two possibilities. Either the source Ryg) is empty or full.
If it is empty we have a 3-steps connection between an empty sink and an
empty source. In this case we redefine the present flow as follows.

We define z(i(1),7(0)) = 1 which we know was = 0 before. We define
z(i(1), 5(2)) = 0, which we know was = 1 before. And we define 2(i(3),(2)) =
1 which we know was = 0 before.

Clearly the new flow will have a size which is increased by 1. That the

matrix z redefined in this way still belongs to the set X (A) is clear since both
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(2(3),7(2)) and (i(1), 7(0)) are admissable arcs - as before, and it also clear
that the new matrix z obtained in this way, still satisfies conditions (1) and
(2). To see this we see that 337, 2(i(1), 7) = 1 still, since the only two terms
which are changed in this sum are the terms z(i(1), 7(0)) and z(i(1), j(2)).
The former term is increased by one and the second is decreased by one and
therefore the sum as before is equal to 1. By the same kind of observation we
note that >N, z(i,j(2)) = 1 as before. And for the sink S;() and the source
Ry it is clear that YN, z(3,5(0)) = 1 and ¥;Z, #(i(3), j) = 1 respectively.

In case Ry is not empty i.e full, then we connect Rys) with its father,
say the sink Sj4), after which we connect the sink Sj(), with its father say
the source Rys).

And in this way we continue until a father of a sink, which we have found
in this way turns out to be an empty source.

Say that the source Rj(sn41) obtained in this way turns out to be empty.
Then we say that we have found a 2n + l-steps connection between the
empty sink Sj) and the empty source Rjsn.1). We then update the flow
as follows. We redefine z(i(2k + 1),j(2k)) = 1 for k = 0,1,2,...,n, all of
which we know were = 0 before, and we redefine z(i(2k + 1), j(2k + 2)) =0
for k =0,1,2,....,n — 1, all of which we know were = 1 before. Since the
number of changes from a value = 0 to a value equal to 1 is one more than
the number of changes from the value 1 to the value 0, it is clear that the
size of the updated flow is increased by 1 by the flow change routine. That
the new flow still belongs to the set X(A) is proved in the same way as we
proved it in the case we had a 3-steps connection. We skip the details in the
the general case.

We hope we now have convinced the reader that the flow change routine

increases the flow by 1 and that the new flow still belongs to the set X (A),
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which was the property we needed in our argument to prove that the primal-
dual algorithm always leads to a solution of the assignment problem. It
should also be clear that the number of operations needed to change the flow

is bounded by a constant times N.

7 The details of the dual variables change
routine.

In case the labelling routine ends with a non-breakthrough we go to the dual
variables change routine.

This routine starts by computing a quantity which we denote by 4. In
order to define 4 let L, be the subset of {1,2, ..., N} such that R; is labelled
if i € Ly, let U; denote the subset of {1,2, ..., N} such that R; is not labelled
if { € Uy, let Ly denote the subset of {1,2,..., M} such that S; is labelled
if j € Ly, and let Us denote the subset of {1,2,..., M} such that S; is not
labelled if j € Us.

The number § is now defined as follows:

6 = min{c(s, j) — a(i) — B(j) : ¢ € L1, j € Up}. (7)

Since the dual variables are feasible it is clear that 6 > 0. That J can not
be equal to zero is easily proved. For assume that ¢ = 0. Thi\s implies that
¢(1(0), (0)) = a(i(0)) 4 B(5(0)) for some arc (4, jo) and hence (i(0),5(0)) is
an admissable arc, where (0) and 5(0) are such that R;( is labelled whereas
Sjroy is not labelled. But the labelling process is such that the labelling
goes on until a breakthrough occurs, or until no further sink or source can

be labelled. But if (i(0),7(0)) is an admissable arc, and the source Rjy)
is labelled then Sj) would also be labelled which contradicts the fact that
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j(0) € U,. Hence é > 0.
We now use § in order to change the dual variables as follows:
Unew(t) = a(i) + 6, if i€ L,
Unew(?) = a(i) if 1€U;
Brew(i) = B() =6, if 1€ Ly
Brew(7) = B(j) if 1€ Ua.
Let us first check that this set of dual variables also is feasible. The only way
that the difference
c(z,5) — (a(t) + B(7))
can decrease is if the source R; is labelled and the sink .S; is unlabelled. But
in this case the difference is at least  and therefore the new set of dual
variables will also be feasible.

Next let us show that the present flow z also belongs to the set X (A')
where A’ is the set of admissable arcs which belong to the new set of dual
variables. What we want to verify is that if ¢(¢,j) — () — 5(j) > 0 then
z(3,7) = 0 or equivalently if z(z,7) = 1 then ¢(i,j) — a(i) — 8(j) = 0. Thus
suppose z(Z, j) = 1. The source R; may either be labelled or unlabelled. If the
source is unlabelled then the sink S; must also be unlabelled since otherwise
R; would be labelled with the sink S; as its father. Hence in this case neither
a(t) nor B(j) are changed and since we know that c(4, j) — (i) — B(j) =0
before since x € X(A) we conclude that (¢, j) must also be admissable after
the updating in this case. If instead the source R; is labelled, then since
z(é,j) = 1 it is not empty, and therefore it must have a father and this
father must be precisely the sink S;. Hence again we find that c(s, j) —
Onew(i) = Prew(J) = c(i,7) — a(i) — 8 — B(j) + 6 = c(i,5) — a(i) — B(j) =0
since z € X(A). Hence z € X(A’).
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The last thing we have to check is that if we continue the labelling where
we left the labelling, then at least one more sink will be labelled. By continue
the labelling we mean that we look at all labelled sources and look at all
admissable arcs obtained by the new set of dual variables, and try to find
a sink which is not yet labelled. That at least one more sink can be found
which is not yet labelled follows immediately from the definition of §. For let
i and j be such that § = ¢(7, j) — @a(?) — Pora(s) and such that R; is labelled
but S; is not yet labelled. At least one such pair exists by the definition of 6.
Then clearly (i, j) is not an admissable arc associated to the old set of dual
variables, but it will of course be an admissable arc in the new set of dual
variables, since Quew (1) = Qua(z) + ¢ and Bpew(j) = Boa(d)-

Since the source R; is labelled we can continue the labelling routine by
labelling the sink S; with the source R;. If the sink S; is empty we have
obtained a breakthrough and we go to the flow change routine. Otherwise we
can either continue the labelling by finding a source R such that z (7, j)=1
or we go to the dual variable change routine again.

The arguments above show that whenever we leave the dual variables
change routine and go back to the labelling routine we will increase the
number of labelled sinks by at least one.

It should also be clear that the number of operations needed to find the
new set of dual variables and the new set of admissable arcs is bounded by
C + N2,

And thereby the proof of the fact that the primal-dual algorithm produces
a solution to the assignment problem - in a finite number of operations - is

cornpleted.
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8 The case N < M.

In the algorithm above we have assumed that the number of sources N is
equal to the number of sinks M. To handle the case when N < M we simply
argue as follows.

We introduce M — N extra sources R;, 1= N+ 1, N +2,..., M with the
property that

e(i,j)=0, i=N+1, N+2,..,M, j=1,2,., M

We then solve the assignment problem associated to this enlarged cost matrix
by using the primal dual algorithm described above. Finally by considering

the matching
P={(@tj@), i=12,..,N}

we obtain an optimal matching for the original problem. For if there would

exist another matching
P ={(4,7(9),i=1,2,..,N}

with a total cost satisfying ¢(P) < ¢(P) then this matching can be used
to obtain a better solution to the enlarged assignment problem and then P
would not be part of an optimal matching of the enlarged problem.

Thus by enlarging the cost matrix with a number of rows whose elements
are 0 we can easily solve the general assignment problem.

I want to point out that in case N << M then the cost matrix will be
enlarged rather much, thereby implying that the computation time will also
be increased rather much compared to what a more direct method might
need, such as the simplex method. However I do not know if there are smart

methods when N is much smaller than M.

20



9 Initial updating.

We have above presented the arguments by which it follows that the primal-
dual algorithm leads to the solution of the assignment problem. In this
section we shall show how one can obtain a rather good initial set of feasible
dual variables. However, the time gained, in comparison to taking, as initial
sets of dual variables, the sets defined by {a(:) = 0,z = 1,2,..., N} and
{B8(j) =0,7=1,2,..., M} is not so large.

Anyhow, as initial set of dual variables we propose the following. We first

define
a(i) =min{c(,j): j = 1,2,..., M}
fori=1,2,..., N. We then define

B(5) = min{c(i, j) — a(?) :i=1,2,..,N}

forj=1,2,..., M.
That these dual variables are feasible is fairly obvious from the definition.
Having defined this set of feasible dual variables, we note that for each
source R; and each sink S; there exists at least one admissable arc. We now
simply define our initial flow z' iteratively as follows. Let S;«) be a sink sich
that (1, (1)) is an admissable arc. Set z(1,j(1)) = 1 and (1, ) = 0 for other
values of j. Let j(2) be an index # j(1) such that (2, 7(2)) is admissable if
such an index j(2) exists.
If it does not exist put z(2,5) =0 for j = 1,2, ..., M. If it does exist put
z(2,7(2)) =1 and z(2, j) = 0 for all other indices j.

And so on.
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10 Computation times.

We have implemented our algorithm in Matlab environment. The cost matrix
we have chosen in our experiments is purely random in the sense that the
cost between a source and a sink is simply uniformly distributed, and all
costs aru independent.

Roughly speaking the the computation time is a few seconds until the size
is at least above 40. When the size of the problem is 100 the computation
time is 30 seconds when using a PC with a Pentium II processor, when the
problem is of size 200 the computation time is approximately 6 minutes,
and when the problem if of size 400 the compution time is approximately 90
minutes. These numbers indicate that the compution time is of order O(IN*)

for large N.

11 Comparison with the simplex method.

We have made some comparisons between our implementation of the primal-
dual algorithm as described above and an algorithm based on the linear
programming routine that exists in the Matlab library.

It turns out that already when the problem is of size 10 the algorithm
based on the linear programming routine is noticably slower. At size 20 the
computation time is approximately 1000 times slower, and for size 30 the
algorithm based on the linear programming routine takes hours to found
the solution whereas the computation time for the primal-dual algorithm
is only a few seconds. We have not made any comparison with any other
implementation of the simplex method then the one based on the LP-function

that exists in MatLab.
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12 Literature.

The primal-dual algorithm for the assignment problem is often called the
Hungarian algorithm. The first publication was by H-W. Kuhn in 1955. See
(3].

There are many textbooks on optimization theory which contain good
descriptions of the primal-dual algorithm for the assignment problem. We
shall here only mention two, namely [4] from the middle of the 1970s by
K.G. Murty, and (1] by R.K. Ahuja, T.L. Magnanti and J.B. Orlin from the
beginning of the 1990s.

This paper is also based on my work on the transportation problem for

images, see e.g. [2].
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